dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1.

نویسندگان

  • Thomas Radimerski
  • Jacques Montagne
  • Felix Rintelen
  • Hugo Stocker
  • Jeroen van der Kaay
  • C Peter Downes
  • Ernst Hafen
  • George Thomas
چکیده

Genetic studies in Drosophila melanogaster underscore the importance of the insulin-signalling pathway in controlling cell, organ and animal size. Effectors of this pathway include Chico (the insulin receptor substrate homologue), dPI(3)K, dPKB, dPTEN, and dS6K. Mutations in any of these components have a striking effect on cell size and number, with the exception of dS6K. Mutants in dS6K affect cell size but not cell number, seemingly consistent with arguments that dS6K is a distal effector in the signalling pathway, directly controlled by dTOR, a downstream effector of dPI(3)K and dPKB. Unexpectedly, recent studies showed that dS6K activity is unimpaired in chico-deficient larvae, suggesting that dS6K activation may be mediated through the dPI(3)K docking sites of the Drosophila insulin receptor. Here, we show genetically, pharmacologically and biochemically that dS6K resides on an insulin signalling pathway distinct from that of dPKB, and surprisingly also from that of dPI(3)K. More striking, despite dPKB-dPI(3)K-independence, dS6K activity is dependent on the Drosophila homologue of the phosphoinositide-dependent protein kinase 1, dPDK1, demonstrating that both dPDK1, as well as dTOR, mediated dS6K activation is phosphatidylinositide-3,4,5-trisphosphate (PIP3)-independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of ...

متن کامل

PDK1 regulates growth through Akt and S6K in Drosophila.

The insulin/insulin-like growth factor-1 signaling pathway promotes growth in invertebrates and vertebrates by increasing the levels of phosphatidylinositol 3,4,5-triphosphate through the activation of p110 phosphatidylinositol 3-kinase. Two key effectors of this pathway are the phosphoinositide-dependent protein kinase 1 (PDK1) and Akt/PKB. Although genetic analysis in Caenorhabditis elegans h...

متن کامل

An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control

BACKGROUND Size regulation is fundamental in developing multicellular organisms and occurs through the control of cell number and cell size. Studies in Drosophila have identified an evolutionarily conserved signaling pathway that regulates organismal size and that includes the Drosophila insulin receptor substrate homolog Chico, the lipid kinase PI(3)K (Dp110), DAkt1/dPKB, and dS6K. RESULTS W...

متن کامل

Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase.

Hypoxia-inducible factor (HIF)-1 activation in response to hypoxia requires mitochondrial generation of reactive oxygen species (ROS). In contrast, the requirement of ROS for HIF-1 activation by growth factors like insulin remains unexplored. To explore that, insulin-sensitive hepatic cell HepG2 or cardiac muscle cell H9c2 cells were pretreated with NADPH oxidase inhibitor diphenyleneiodonium c...

متن کامل

Differential role of diphenyleneiodonium, a flavoenzyme inhibitor, on p53-dependent and -independent cell cycle progression.

We investigated the differential role of diphenyleneiodonium (DPI), which is widely used as an inhibitor of NADPH oxidase, on the activation of cell cycle regulators in the cell cycle progression. DPI efficiently blocked the transition from G0/G1 to S phase by serum stimulation in quiescent HCT-116 (wild-type p53) and HL-60 (null p53) cells. Concomitant with G0/G1 arrest, HCT-116 cells treated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature cell biology

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2002